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EXO200:

• ~175	kg	LXe	(single	phase)

• Operational	since	2011

• Sensitivity	goal:	T1/2 6E25yr

nEXO

• ~5000	kg	LXe

• R&D	phase

• Sensitivity	goal:

T1/2 1E28yr	@90%	C.L.
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Backgrounds	are	relative

EXO	signal:

• Qββ=	2458	keV

• Electron	scattering	

• Predominately	single	site
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Design	process

Physics	
sensitivity

Detector	
design

Monte	Carlo	
simulations

Material	
assays

Background	
budget
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EXO-200	backgrounds
• All	materials	internal	to	lead	assayed;	225	candidate	materials+preparations
published	(NIMA	2008)
• ICP-MS	/	GD-MS

• Neutron	Activation	+	Ge	counting
• Gamma	counting	(Ge)

• Xenon	wetted	materials	assayed	for	Rn	emanation
• Electro	static	chamber

• Design	Monte	Carlo	(Geant3)	
• Assay	sensitivity	requirements
• Predict	background	+	find	radioactive	offenders

• Final	design	and	background	estimate	published	
(JINST	2012)
• Geant4	Monte	Carlo	with	detailed	design,	electronics	sim,	etc.

• EXO-200	data	confirms	predictions	were	accurate	
(PRC	2014,	Nature	2014,	PRC	2015,	JCAP	2016)

• Follow	up	assay	paper	to	be	published	soon	with	many	more	measurements

Events	in	±2σ

around Q

Radioactive bkgd prediction	

during	design

Radioactive bkgd prediction	

using	present	Monte Carlo

137Xe

bkgd

Background	from	0ν

analysis	fit	(PRC	2014)

90%CL	Upper 48 22
7

31.1	± 1.8	± 3.3
(39	events	observed)90%CL Lower 9.4 3.3
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Design	trade-offs	(EXO-200)

Thin	copper	vessel	(1.3	mm)

Precision	gas	handling	system

Large	Xe volume

HV	design	limits
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HFE	radiation	shield	(4	tons)	

Large	cryostats

External	electronics

Increased	readout	noise



Working	with	manufacturers	(example)

• Large	area	APDs	from	Advanced	Photonics	Inc.	(NIMA	2009)
• No	ceramic	encapsulation	or	window

• Access	to	raw	materials	to	check	radioactivity

• Default	mfg.	aluminum	found	to	have	high	background

• We	supplied	O(3)	cleaner	aluminum	for	the	mfg of	our	APDs

Solderless	connections

Custom	kapton cables
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Kapton cables	and	feedthroughs

• Kapton (polyimide	sheets)	can	be	very	clean

• Th232	=	0.55	pg/cm2,	U238	=	1.6	pg/cm2

• Low	mass	cables	can	be	manufactured

• 18	μm	copper	traces	laminated	between	
25	μm	polyimide	sheets

• All	mechanical	connections	(solderless)
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B.G.	constraints	leading	to	design
Source	calibration	system	

• Max	tube	size	¼”	with	cleanest	(commercial)	copper	
available	to	limit	mass
• Sourced	in	Switzerland,	shipped	by	boat	to	Stanford

• Miniaturized	source	needed	to	be	designed
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EXO-200	unique	solutions
Self-tensioning	charge	collection	wires

Chamber	welded	w/	E-beam

Gas	Xe pump	w/	all	metal	seals	

(RSI	2010)
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DeRadonator – Removing	Rn222	from	air

Rn222	Air	Gap

Th232	Vessel

U238	Vessel

(PRL	2012)

Air	gap
Rn tent

DeRadonator (vacuum	swing	

adsorption	charcoal	filter)	can	

deliver	0.85	m3/min	of	low	Rn	air

Measurements	show	that	the	Rn	level	in	the	air	gap	has	been	reduced	by	a	factor	>10,	

sufficient	to	suppress	this	background	for	0nbb search.	
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Cosmic	activation,	building	&	shipping

Stanford,	CA

ESIII	~	7	m.w.e.

• Copper	shipped	in	concrete	casket	(2	m.w.e)	by	boat	from	Europe	to	Stanford

• TPC	machined	&	assembled	in	~7	m.w.e shielded	CR	(Stanford	ESIII)

• TPC	transported	to	WIPP		in	concrete	casket	(2	m.w.e)	under	N2	purge

• A	team	of	drivers	made	drive	through	elevation	planned	route

• 36	hours	from	ESIII	to	U/G	@	WIPP
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Carlsbad,	NM

WIPP	1600	m.w.e.



Assay	tools	then	and	now	

EXO-200

• ICPMS

• NRC	- Canada	[1/1	ppt	Th/U]

• GD-MS

• NRC	- Canada	[10/10	ppt	Th/U]

• Ge	gamma	spectroscopy

• Alabama	

• Bern

• SNOLab

• Neutron	activation

• Alabama	[1/0.4	ppt	Th/U]

• Rn	emanation

• Laurentian	[~3	atoms/(m2 d	)	222Rn]

nEXO (&	still	growing)

• ICPMS

• IHEP	– China	[Commissioning]

• PNNL	[8/10	ppq Th/U]

• CUP	- S.	Korea	[Commissioning]

• GD-MS

• NRC-Canada	[10/10	ppt	Th/U]

• Ge	gamma	spectroscopy

• SNOLab [200/35	ppt	Th/U]

• SURF	[Commissioning]

• Alabama	[300/100	ppt	Th/U]

• Neutron	activation

• Alabama		[1/0.4	ppt	Th/U]

• Rn	emanation

• Laurentian	[~3	atoms/m2 d	222Rn]

• Alpha	counting

• Alabama		[~3	mBq/m2 210Po]
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Bern	Ge	moved	to	SNOLab for	nEXO
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To	keep	the	Bern	detector	as	a	nEXO

resource,	it	was	relocated	to	SNOLab in	

2016.	

Detector	sensitivity	is	better	thanks	to	

larger	overburden.



Rn	emanation	- Electro	Static	Chambers
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#	ESC’s	- purpose

6	– emanation

1	– RnTrap R&D

1	– RnTent monitoring	

and	emanation	@	

WIPP

Operated	by	Laurentian	University	@	SNOLab surface	lab



Basic	layout	of	an	Electro	Static	Counter

A. Drift	Volume
(~10	Liters)

B. Sample

C. Recirculation	
Pump

D. Si	photo-diode	
(alpha	detector)

E. Diode	bias	and	
readout	circuit

J.-X.	Wang	et	al.	/	NIMA	421	

(1999)	601-609
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Chains	with	Rn	measured	by	ESCs
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222Rn – Uranium	Chain

T12	=	3.8	days

Po218	@	6.1	MeV

Po214	@	7.8	MeV

220Rn – Thorium	Chain

T12	=	55	sec

Po216	@	6.9	MeV

Po212	@	9.0	MeV

219Rn – Actinium	Chain

T12	=	4	sec

Bi211	@	6.6,6.3	MeV



218Po
222Rn

214Po

RAW LM	Corrected

Rn	in	EXO-200	
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Surface
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Background	rejection	and	energy	resolution	(nEXO R&D)
19

SiPMs

Charge	collection	

tiles

3mm	pitch

APD

Charge	

collection	wire

9mm	chn pitch

EXO-200

nEXO

New	Technology:	SiPMs for	UV	Photodetection

Igor	Ostrovskiy (Tomorrow)



nEXO energy	resolution:	cold	electronics

5/27/16
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Location Cable							

length

(m)

Total

cap

(pF)

Intrinsic	

RMS	

Noise	(e)

RMS

contribution to	

charge	energy	

resolution

Charge	

cluster	

threshold	

(keV)

In	lab

(warm) 8 800 3200 2.5% 600	keV

At	cryostat

(warm/cold) 2 200 800 0.6% 150	keV

Inside TPC

(cold) ~0 <40 <200 0.2% 40	keV

Assumes	simple	tile	charge	collection	system	with	interleaved	

strips	and	EXO-200	style	cables	for	the	remote	location	cases

Comparison	for	noise	and	threshold	between	front-end	

locations	for	the	charge	channel	

Cold	electronics	new	challenge	for	low	BG	experiments



nEXO background	budgets	(90%	U.L.)
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• Background	contributions	in	FWHM	of	inner	3	tons
• Bgd index	=	0.7	cts/ROI/t/yr

• Based	on	assays	of	currently	available	materials	

• R&D	to	focus	on	finding	lower	BG	materials

• The	innermost	region	of	the	detector	is	almost	

background	free

• Bgd index	=	0.12	cts/ROI/t/yr

• Measure	backgrounds	with	outer	volumes,	fit	uses	

3D	information	optimally

3860	kg	fiducial	Xe

90%	enrichment

90%	background	rejection

82%	signal	efficiency
1%	sE/E	resolution



EXO	copper
22

R&D	on	(and	later	qualification	of)	low	background	

materials	is	in	full	swing	for	nEXO…

A	note	on	the	copper	that	is	the	dominant	background	

from	the	TPC	vessel:	

~U,	Th (ppt)

EXO-200	ICPMS measurement	(Aurubis copper) <	6, <14

EXO-200	measurement	(Aurubis process) <	4

nEXO measurement	of Aurubis copper <	1

PNNL	measurement of	electroformed	Cu ~	0.01

Study	in	progress	of	the	Aurubis process	seems	to	indicate	

that	0.1	ppt may	very	well	be	already	achieved.



nEXO Ba	tagging	R&D	(-->	B.G.	free?)

4/11/2016	PNNL Brian	Mong	::	EXO
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• Trigger	on	ionization/scintillation

• In	real	time	estimate	if	0ν	candidate

• Insert	probe	and	electrostatically	attract	Ba-ion	(or freeze it)

• Several	detection	methods	being	explored:

Rev	Sci Inst 85	(2014)	095114 Phys Rev	A	91	(2015)	022505

Remove	à desorb	à RIS	à CEM Spectroscopy	in	SXe matrix	

(my	thesis)
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NLDBD	Fit	Results	(Nature	2014)

8/23/2016	LANL
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Single	Site	Spectrum	(zoom)



Fitting	PDFs
• Vessel	(All	Cu	components	inside	cryostat)

• 60Co,	40K,	232Th,	238U,	65Zn

• Rn
• 214Bi	– cathode	

• 222Rn	– Active	LXe	

• 214Bi	– Air	Gap

• 222Rn	– Inactive	LXe

• LXe	bgd
• 135Xe,	137Xe

• n-capture
• 1H	– HFE	

• 63,65Cu	– Vessel,	InnerCryo,	OuterCryo

• 136Xe	– LXe	



Optimization	from	EXO-200	to	the	nEXO scale

5/27/16
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What Why

~30x	volume/mass To give	sensitivity	to	the	inverted	hierarchy

No	cathode	in	the	middle Larger	low	background	volume/no	214Bi	in	the	middle

6x	HV	for	the	same	field Larger	detector	and	one	drift	cell

>3x	electron	lifetime Larger detector	and	one	drift	cell

Better	photodetector coverage Energy resolution

SiPM instead	of	APDs Higher gain,	lower	bias,	lighter,	E	resolution

In	LXe electronics Lower	noise,	more	stable,	fewer	cables/feedthroughs,

E	resolution,	lower	threshold for	Compton	ID

Lower	outgassing	components Longer	electron	lifetime

Different	calibration	methods Very	“deep”	detector	(by	design)

Deeper	site Less	cosmogenic activation

Larger vessels 5	ton	detector	and	more	shielding



The	mine	is	sometimes	the	challenge…

8/23/2016	LANL
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Feb	5,	2014	– Haul	truck	fire

Feb	14,	2014	– Rad	event	

Recovery

• Feb	18,	2014:	begin	remote	recovery	

of	LXe

• Sept	2014–June	2015:	Clean	up	drift,	

TPC	health	checks

• June	– Oct	2015:	Equipment	repair	and	

maintenance

Phase-II	Restart

• Oct	2015	– Jan	2016:	system	

cooldown,	gas	purification,	LXe	filling

• Feb	– April	2016:	Detector	electronics	

upgrades

• April	2016:	Phase-II	data	taking	begins



Background	mitigation	methods
• Experimental	design

• Large	volumes	of	HFE/xenon
• Low	mass	vessel
• Only	screened	materials	inside	lead	with	budget
• Underground	with	muon	veto

• Material	choices	for	insitu activation

• Material	screening
• ICP-MS	
• GD-MS
• Germanium	gamma	counting

• Neutron	activation
• Rn	emanation

• Clean	material	manufacturing	&	handling
• Through	surface	cleaning	procedure	w/	acid	etch
• Materials	storage	w/	N2	purge	(low	Rn)
• e-beam	welding	–or	- ceriated welding	rods	for	conventional	welds

• Working	with	manufacturers

• Operations
• Radon	exclusion	with	DeRadonator
• RnTrap R&D	
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